domingo, 25 de agosto de 2019

Calor latente, também chamado de calor de formação,[1] é a grandeza física relacionada à quantidade de calor que uma unidade de massa de determinada substância deve receber ou ceder para mudar de fase, ou seja, passar do sólido para o líquido, do líquido para o gasoso e vice-versa. Durante a mudança de fase a temperatura da substância não varia, mas seu estado de agregação molecular se modifica.
O calor latente pode ter valores tanto positivos quanto negativos. É positivo se a substância estiver recebendo calor e negativo se estiver cedendo calor. No Sistema Internacional de Unidades (SI), a unidade é J/kg (joule por quilograma). Outra unidade usual é caloria por grama (cal/g). A unidade caloria tende a desaparecer à medida que o SI vá sendo implantado pelos países que o aprovaram.

    História[editar | editar código-fonte]

    Gráfico da variação de temperatura da água em função do tempo (fora de escala).
    A palavra latente vem do latim latēns que significa oculto.[2] O termo foi usado pela primeira vez em 1761 por Joseph Black que deduziu que ao doar calor para um sistema água/gelo não causa o aumento de sua temperatura, e sim um aumento na quantidade de água na mistura. Em seguida Black observou que adicionar calor à água em ebulição também não causava um aumento na temperatura, e sim um aumento do vapor no sistema água/vapor. A partir dessas observações, Black concluiu que o calor aplicado deveria ter se combinado com as partículas do gelo e da água fervente e se tornado latente. Sua teoria marca o início da Termodinâmica.[3] Ele também mostrou que diferentes substâncias possuem diferentes calor específico.

    Expressão matemática[editar | editar código-fonte]

    Para calcular o calor latente de uma substância, basta dividir a quantidade de calor Q que a substância precisa ganhar ou perder para mudar de fase pela massa m da mesma.
    x

    x
    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    Temos que L é o calor latente, a quantidade de energia necessária para que 1g da amostra mude de fase, e pode ser representadas pelas unidades kJ/kg ou cal/g.
    Quando a mudança é da fase líquida para a fase gasosa (amostra absorve calor), o calor latente é chamado de Calor de Ebulição/Vaporização (Lv), e seu valor é igual em módulo, porém com o sinal oposto (amostra cede calor) do Calor de Condensação (Lc).
    Quando a mudança de fase se dá de sólida para líquida (amostra absorve calor), o calor latente é chamado de Calor de Fusão, e seu valor é igual em módulo e de sinal oposto ao do Calor de Solidificação (amostra cede calor).

    Tabela de calores latentes[editar | editar código-fonte]

    A tabela abaixo apresenta alguns elementos e seus respectivos calor latentes e fusão e ebulição, assim como a temperatura de transição de fase.[1]
    SubstânciaPonto de Fusão
    (K)
    Calor Latente de Fusão
    (kJ/kg)
    Ponto de Ebulição
    (K)
    Calor Latente de Vaporização
    (kJ/kg)
    Hidrogênio14,058,020,3455
    Oxigênio54,813,990,2213
    Mercúrio23411,4630296
    Água2733333732256
    Chumbo60123,22017858
    Prata123510523232326
    Cobre135620728684730

    x


    x
    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D

    Calor latente da água[editar | editar código-fonte]

    Calor latente de condensação[editar | editar código-fonte]

    O calor latente de condensação da água, no intervalo de temperatura entre -40°C e 40°C, pode ser aproximado pela função cúbica abaixo:
    [4]
    x

    x
    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D
    onde a temperatura  é usada em °C.

    Calor latente de sublimação[editar | editar código-fonte]

    No mesmo intervalo de temperatura, o calor latente de sublimação pode ser aproximado pela função quadrática:
    [4]
    x

    x
    TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

    x
     [EQUAÇÃO DE DIRAC].

     +

       +   

      ,      +   

      +

    +     


    X


    • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

      X =
      ΤDCG
      X
      Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
      x
      sistema de dez dimensões de Graceli + 
      DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
      x
      sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
      x
    • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
    • X
    • T l    T l     E l       Fl         dfG l   
      N l    El                 tf l
      P l    Ml                 tfefel 
      Ta l   Rl
               Ll
               D




    calorimetria de titulação isotérmica (ITC) é uma técnica biofísica usada para determinar parâmetros termodinâmicos de interações bioquímicas. É frequentemente usada para estudar a ligação de pequenas moléculas (como, por exemplo, compostos medicinais) a grandes macromoléculas (proteínasDNA etc.).

      Medições termodinâmicas[editar | editar código-fonte]

      ITC é uma técnica quantitativa que pode medir diretamente a afinidade de ligação (Ka), mudanças na entalpia (ΔH), e estequiometria da ligação (n) da interação entre duas ou mais moléculas em solução. Destas medições iniciais, mudanças na energia livre de Gibbs (ΔG), e mudanças na entropia (ΔS), podem ser determinadas usando a relação:
      ΔG = -RTlnK = ΔH-TΔS
      x

      x
      TRANSFORMAÇÕES ⇔ INTERAÇÕES  ⇔  TUNELAMENTO ⇔ EMARANHAMENTO ⇔ CONDUTIVIDADE  ⇔ DIFRAÇÕES ⇔ radioatividade, ABSORÇÕES E EMISSÕES INTERNA ⇔  Δ de temperatura e dinâmicas, transições de estados quântico Δ ENERGIAS,     Δ MASSA ,    Δ  CAMADAS ORBITAIS ,    Δ FENÔMENOS  ,  ⇔  Δ  DINÂMICAS,     Δ  VALÊNCIAS,     Δ BANDAS,  Δ  entropia e de entalpia,  E OUTROS.  

      x
       [EQUAÇÃO DE DIRAC].

       +

         +   

        ,      +   

        +

      +     


      X


      • V [R] [MA] =  Δe,M, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......

        X =
        ΤDCG
        X
        Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
        x
        sistema de dez dimensões de Graceli + 
        DIMENSÕES EXTRAS DO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.
        x
        sistema de transições de estados, e estados  de Graceli, fluxos aleatórios quântico, potencial entrópico e de entalpia.
        x
      • TEMPO ESPECÍFICO E FENOMÊNICO DE GRACELI
      • X
      • T l    T l     E l       Fl         dfG l   
        N l    El                 tf l
        P l    Ml                 tfefel 
        Ta l   Rl
                 Ll
                 D
      (onde R é a constante dos gases e T é a temperatura absoluta).